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Reading: Principles of Data Mining, sections 10.5 and 5.2 (in that order);
Berk, chapter 3

Having built up increasingly complicated models for regression, I’ll now
switch gears and introduce a class of nonlinear predictive model which at first
seems too simple to possible work, namely prediction trees. These have two
varieties, regression trees and classification trees.

1 Prediction Trees

The basic idea is very simple. We want to predict a response or class Y from
inputs X1, X2, . . . Xp. We do this by growing a binary tree. At each internal
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node in the tree, we apply a test to one of the inputs, say Xi. Depending on
the outcome of the test, we go to either the left or the right sub-branch of the
tree. Eventually we come to a leaf node, where we make a prediction. This
prediction aggregates or averages all the training data points which reach that
leaf. Figure 1 should help clarify this.

Why do this? Predictors like linear or polynomial regression are global
models, where a single predictive formula is supposed to hold over the entire
data space. When the data has lots of features which interact in complicated,
nonlinear ways, assembling a single global model can be very difficult, and hope-
lessly confusing when you do succeed. Some of the non-parametric smoothers
try to fit models locally and then paste them together, but again they can be
hard to interpret. (Additive models are at least pretty easy to grasp.)

An alternative approach to nonlinear regression is to sub-divide, or parti-
tion, the space into smaller regions, where the interactions are more manage-
able. We then partition the sub-divisions again — this is recursive partition-
ing, as in hierarchical clustering — until finally we get to chunks of the space
which are so tame that we can fit simple models to them. The global model thus
has two parts: one is just the recursive partition, the other is a simple model
for each cell of the partition.

Now look back at Figure 1 and the description which came before it. Predic-
tion trees use the tree to represent the recursive partition. Each of the terminal
nodes, or leaves, of the tree represents a cell of the partition, and has attached
to it a simple model which applies in that cell only. A point x belongs to a
leaf if x falls in the corresponding cell of the partition. To figure out which cell
we are in, we start at the root node of the tree, and ask a sequence of ques-
tions about the features. The interior nodes are labeled with questions, and the
edges or branches between them labeled by the answers. Which question we ask
next depends on the answers to previous questions. In the classic version, each
question refers to only a single attribute, and has a yes or no answer, e.g., “Is
HSGrad > 0.78?” or “Is Region == Midwest?” The variables can be of any
combination of types (continuous, discrete but ordered, categorical, etc.). You
could do more-than-binary questions, but that can always be accommodated as
a larger binary tree. Asking questions about multiple variables at once is, again,
equivalent to asking multiple questions about single variables.

That’s the recursive partition part; what about the simple local models?
For classic regression trees, the model in each cell is just a constant estimate of
Y . That is, suppose the points (xi, yi), (x2, y2), . . . (xc, yc) are all the samples
belonging to the leaf-node l. Then our model for l is just ŷ = 1

c

∑c
i=1 yi, the

sample mean of the response variable in that cell. This is a piecewise-constant
model.1 There are several advantages to this:

• Making predictions is fast (no complicated calculations, just looking up
1We could instead fit, say, a different linear regression for the response in each leaf node,

using only the data points in that leaf (and using dummy variables for non-quantitative
features). This would give a piecewise-linear model, rather than a piecewise-constant one.
If we’ve built the tree well, however, all the points in each leaf are pretty similar, so the
regression surface would be nearly constant anyway.
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Figure 1: Classification tree for county-level outcomes in the 2008 Democratic Party

primary (as of April 16), by Amanada Cox for the New York Times.
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constants in the tree)

• It’s easy to understand what variables are important in making the pre-
diction (look at the tree)

• If some data is missing, we might not be able to go all the way down the
tree to a leaf, but we can still make a prediction by averaging all the leaves
in the sub-tree we do reach

• The model gives a jagged response, so it can work when the true regression
surface is not smooth. If it is smooth, though, the piecewise-constant
surface can approximate it arbitrarily closely (with enough leaves)

• There are fast, reliable algorithms to learn these trees

A last analogy before we go into some of the mechanics. One of the most
comprehensible non-parametric methods is k-nearest-neighbors: find the points
which are most similar to you, and do what, on average, they do. There are
two big drawbacks to it: first, you’re defining “similar” entirely in terms of the
inputs, not the response; second, k is constant everywhere, when some points
just might have more very-similar neighbors than others. Trees get around both
problems: leaves correspond to regions of the input space (a neighborhood), but
one where the responses are similar, as well as the inputs being nearby; and
their size can vary arbitrarily. Prediction trees are adaptive nearest-neighbor
methods.

2 Regression Trees

Let’s start with an example.

2.1 Example: California Real Estate Again

After the homework and the last few lectures, you should be more than familiar
with the California housing data; we’ll try growing a regression tree for it. There
are several R packages for regression trees; the easiest one is called, simply, tree.

calif = read.table("~/teaching/350/hw/06/cadata.dat",header=TRUE)
require(tree)
treefit = tree(log(MedianHouseValue) ~ Longitude+Latitude,data=calif)

This does a tree regression of the log price on longitude and latitude. What
does this look like? Figure 2 shows the tree itself; Figure 3 shows the partition,
overlaid on the actual prices in the state. (The ability to show the partition is
why I picked only two input variables.)

Qualitatively, this looks like it does a fair job of capturing the interaction
between longitude and latitude, and the way prices are higher around the coasts
and the big cities. Quantitatively, the error isn’t bad:
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|Latitude < 38.485

Longitude < -121.655

Latitude < 37.925 Latitude < 34.675

Longitude < -118.315

Longitude < -117.545

Latitude < 33.725 Latitude < 33.59
Longitude < -116.33

Longitude < -120.275

Latitude < 39.355

12.48 12.10

12.53

12.54 12.14
12.09 11.16

11.63

11.75 11.28

11.73 11.32

plot(treefit)
text(treefit,cex=0.75)

Figure 2: Regression tree for predicting California housing prices from geo-
graphic coordinates. At each internal node, we ask the associated question, and
go to the left child if the answer is “yes”, to the right child if the answer is “no”.
Note that leaves are labeled with log prices; the plotting function isn’t flexible
enough, unfortunately, to apply transformations to the labels.

5



price.deciles = quantile(calif$MedianHouseValue,0:10/10)
cut.prices = cut(calif$MedianHouseValue,price.deciles,include.lowest=TRUE)
plot(calif$Longitude,calif$Latitude,col=grey(10:2/11)[cut.prices],pch=20,

xlab="Longitude",ylab="Latitude")
partition.tree(treefit,ordvars=c("Longitude","Latitude"),add=TRUE)

Figure 3: Map of actual median house prices (color-coded by decile, darker
being more expensive), and the partition of the treefit tree.
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> summary(treefit)

Regression tree:
tree(formula = log(MedianHouseValue) ~ Longitude + Latitude,

data = calif)
Number of terminal nodes: 12
Residual mean deviance: 0.1662 = 3429 / 20630
Distribution of residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.759e+00 -2.608e-01 -1.359e-02 -5.050e-15 2.631e-01 1.841e+00

Here “deviance” is just mean squared error; this gives us an RMS error of 0.41,
which is higher than the models in the last handout, but not shocking since
we’re using only two variables, and have only twelve nodes.

The flexibility of a tree is basically controlled by how many leaves they have,
since that’s how many cells they partition things into. The tree fitting function
has a number of controls settings which limit how much it will grow — each
node has to contain a certain number of points, and adding a node has to reduce
the error by at least a certain amount. The default for the latter, min.dev, is
0.01; let’s turn it down and see what happens.

Figure 4 shows the tree itself; with 68 nodes, the plot is fairly hard to read,
but by zooming in on any part of it, you can check what it’s doing. Figure 5
shows the corresponding partition. It’s obviously much finer-grained than that
in Figure 3, and does a better job of matching the actual prices (RMS error
0.32). More interestingly, it doesn’t just uniformly divide up the big cells from
the first partition; some of the new cells are very small, others quite large. The
metropolitan areas get a lot more detail than the Mojave.

Of course there’s nothing magic about the geographic coordinates, except
that they make for pretty plots. We can include all the input features in our
model:

treefit3 <- tree(log(MedianHouseValue) ~., data=calif)

with the result shown in Figure 6. This model has fifteen leaves, as opposed
to sixty-eight for treefit2, but the RMS error is almost as good (0.36). This
is highly interactive: latitude and longitude are only used if the income level
is sufficiently low. (Unfortunately, this does mean that we don’t have a spatial
partition to compare to the previous ones, but we can map the predictions;
Figure 7.) Many of the features, while they were available to the tree fit, aren’t
used at all.

Now let’s turn to how we actually grow these trees.

2.2 Regression Tree Fitting

Once we fix the tree, the local models are completely determined, and easy to
find (we just average), so all the effort should go into finding a good tree, which
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Figure 4: As Figure 2, but allowing splits for smaller reductions in error.
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plot(calif$Longitude,calif$Latitude,col=grey(10:2/11)[cut.prices],pch=20,
xlab="Longitude",ylab="Latitude")

partition.tree(treefit2,ordvars=c("Longitude","Latitude"),add=TRUE,cex=0.3)

Figure 5: Partition for treefit2. Note the high level of detail around the cities,
as compared to the much coarser cells covering rural areas where variations in
prices are less extreme.
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plot(treefit3)
text(treefit3,cex=0.5,digits=3)

Figure 6: Regression tree for log price when all other features are included as
(potential) inputs. Note that many of the features are not used by the tree.
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cut.predictions = cut(predict(treefit3),log(price.deciles),include.lowest=TRUE)
plot(calif$Longitude,calif$Latitude,col=grey(10:2/11)[cut.predictions],pch=20,

xlab="Longitude",ylab="Latitude")

Figure 7: Predicted prices for the treefit3 model. Same color scale as in
previous plots (where dots indicated actual prices).
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is to say into finding a good partitioning of the data. We saw some ways of
doing this when we did clustering, and will recycle those ideas here.

In clustering, remember, what we would ideally do was maximizing I[C;X],
the information the cluster gave us about the features X. With regression trees,
what we want to do is maximize I[C;Y ], where Y is now the response variable,
and C the variable saying which leaf of the tree we end up at. Once again, we
can’t do a direct maximization, so we again do a greedy search. We start by
finding the one binary question which maximizes the information we get about
Y ; this gives us our root node and two daughter nodes.2 At each daughter
node, we repeat our initial procedure, asking which question would give us the
maximum information about Y , given where we already are in the tree. We
repeat this recursively.

Every recursive algorithm needs to know when it’s done, a stopping cri-
terion. Here this means when to stop trying to split nodes. Obviously nodes
which contain only one data point cannot be split, but giving each observations
its own leaf is unlikely to generalize well. A more typical criterion is something
like: halt when each child would contain less than five data points, or when
splitting increases the information by less than some threshold. Picking the
criterion is important to get a good tree, so we’ll come back to it presently.

We have only seen entropy and information defined for discrete variables.3

You can define them for continuous variables, and sometimes the continuous
information is used for building regression trees, but it’s more common to do the
same thing that we did with clustering, and look not at the mutual information
but at the sum of squares. The sum of squared errors for a tree T is

S =
∑

c∈leaves(T )

∑
i∈c

(yi −mc)2

where mc = 1
nc

∑
i∈c yi, the prediction for leaf c. Just as with clustering, we can

re-write this as
S =

∑
c∈leaves(T )

ncVc

where Vc is the within-leave variance of leaf c. So we will make our splits so as
to minimize S.

The basic regression-tree-growing algorithm then is as follows:

1. Start with a single node containing all points. Calculate mc and S.

2. If all the points in the node have the same value for all the input variables,
stop. Otherwise, search over all binary splits of all variables for the one
which will reduce S as much as possible. If the largest decrease in S
would be less than some threshold δ, or one of the resulting nodes would
contain less than q points, stop. Otherwise, take that split, creating two
new nodes.

2Mixing botanical and genealogical metaphors for trees is ugly, but I can’t find a way
around it.

3Unless you read the paper by David Feldman, that is.
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3. In each new node, go back to step 1.

Trees use only one feature (input variable) at each step. If multiple fea-
tures are equally good, which one is chosen is a matter of chance, or arbitrary
programming decisions.

One problem with the straight-forward algorithm I’ve just given is that it
can stop too early, in the following sense. There can be variables which are
not very informative themselves, but which lead to very informative subsequent
splits. (This was the point of all our talk about interactions when we looked at
information theory.) This suggests a problem with stopping when the decrease
in S becomes less than some δ. Similar problems can arise from arbitrarily
setting a minimum number of points q per node.

A more successful approach to finding regression trees uses the idea of cross-
validation from last time. We randomly divide our data into a training set and
a testing set (say, 50% training and 50% testing). We then apply the basic
tree-growing algorithm to the training data only, with q = 1 and δ = 0 — that
is, we grow the largest tree we can. This is generally going to be too large and
will over-fit the data. We then use cross-validation to prune the tree. At each
pair of leaf nodes with a common parent, we evaluate the error on the testing
data, and see whether the testing sum of squares would shrink if we removed
those two nodes and made their parent a leaf. If so, we prune; if not, not. This
is repeated until pruning no longer improves the error on the testing data. The
reason this is superior to arbitrary stopping criteria, or to rewarding parsimony
as such, is that it directly checks whether the extra capacity (nodes in the tree)
pays for itself by improving generalization error. If it does, great; if not, get rid
of it. This is something we can do with regression trees that we couldn’t really
do with (say) hierarchical clustering, because trees make predictions we can test
on new data, and the clustering techniques we looked at before do not.

There are lots of other cross-validation tricks for trees. One cute one is to
alternate growing and pruning. We divide the data into two parts, as before, and
first grow and then prune the tree. We then exchange the role of the training
and testing sets, and try to grow our pruned tree to fit the second half. We then
prune again, on the first half. We keep alternating in this manner until the size
of the tree doesn’t change.

2.2.1 Cross-Validation and Pruning in R

The tree package contains functions prune.tree and cv.tree for pruning trees
by cross-validation.

The function prune.tree takes a tree you fit by tree (see R advice for last
homework), and evaluates the error of the tree and various prunings of the tree,
all the way down to the stump. The evaluation can be done either on new data,
if supplied, or on the training data (the default). If you ask it for a particular
size of tree, it gives you the best pruning of that size4. If you don’t ask it for

4Or, if there is no tree with that many leaves, the smallest number of leaves ≥ the requested
size.

13



the best tree, it gives an object which shows the number of leaves in the pruned
trees, and the error of each one. This object can be plotted.

my.tree = tree(y ~ x1 + x2, data=my.data) # Fits tree
prune.tree(my.tree,best=5) # Returns best pruned tree with 5 leaves, evaluating

# error on training data
prune.tree(my.tree,best=5,newdata=test.set) # Ditto, but evaluates on test.set
my.tree.seq = prune.tree(my.tree) # Sequence of pruned tree sizes/errors
plot(my.tree.seq) # Plots size vs. error
my.tree.seq$dev # Vector of error rates for prunings, in order
opt.trees = which(my.tree.seq$dev == min(my.tree.seq$dev)) # Positions of
# optimal (with respect to error) trees

min(my.tree.seq$size[opt.trees]) # Size of smallest optimal tree

Finally, prune.tree has an optional method argument. The default is method="deviance",
which fits by minimizing the mean squared error (for continuous responses) or
the negative log likelihood (for discrete responses; see below).5

The function cv.tree does k-fold cross-validation (default is 10). It requires
as an argument a fitted tree, and a function which will take that tree and new
data. By default, this function is prune.tree.

my.tree.cv = cv.tree(my.tree)

The type of output of cv.tree is the same as the function it’s called on. If I do

cv.tree(my.tree,best=19)

I get the best tree (per cross-validation) of no more than 19 leaves. If I do

cv.tree(my.tree)

I get information about the cross-validated performance of the whole sequence of
pruned trees, e.g., plot(cv.tree(my.tree)). Optional arguments to cv.tree
can include K, and any additional arguments for the function it applies.

To illustrate, think back to treefit2, which predicted predicted California
house prices based on geographic coordinates, but had a very large number
of nodes because the tree-growing algorithm was told to split on almost any
provocation. Figure 8 shows the size/performance trade-off. Figures 9 and
10 show the result of pruning to the smallest size compatible with minimum
cross-validated error.

2.3 Uncertainty in Regression Trees

Even when we are making point predictions, we have some uncertainty, because
we’ve only seen a finite amount of data, and this is not an entirely representative
sample of the underlying probability distribution. With a regression tree, we

5With discrete responses, you may get better results by saying method="misclass", which
looks at the misclassification rate.
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treefit2.cv <- cv.tree(treefit2)
plot(treefit2.cv)

Figure 8: Size (horizontal axis) versus cross-validated sum of squared errors
(vertical axis) for successive prunings of the treefit2 model. (The upper scale
on the horizontal axis refers to the “cost/complexity” penalty. The idea is
that the pruning minimizes (total error) + λ(complexity) for a certain value of
λ, which is what’s shown on that scale. Here complexity is a function of the
number of leaves; see Ripley (1996) for details. Or, just ignore the upper scale!)
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opt.trees = which(treefit2.cv$dev == min(treefit2.cv$dev))
best.leaves = min(treefit2.cv$size[opt.trees])
treefit2.pruned = prune.tree(treefit2,best=best.leaves)
plot(treefit2.pruned)

Figure 9: treefit2, after being pruned by ten-fold cross-validation.
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plot(calif$Longitude,calif$Latitude,col=grey(10:2/11)[cut.prices],pch=20,
xlab="Longitude",ylab="Latitude")

partition.tree(treefit2.pruned,ordvars=c("Longitude","Latitude"),
add=TRUE,cex=0.3)

Figure 10: treefit2.pruned’s partition of California. Compare to Figure 5.

17



can separate the uncertainty in our predictions into two parts. First, we have
some uncertainty in what our predictions should be, assuming the tree is correct.
Second, we may of course be wrong about the tree.

The first source of uncertainty — imprecise estimates of the conditional
means within a given partition — is fairly easily dealt with. We can consis-
tently estimate the standard error of the mean for leaf c as Vc/(nc − 1), just
like we would for any other mean of IID samples. The second source is more
troublesome; as the response values shift, the tree itself changes, and discontin-
uously so, tree shape being a discrete variable. What we want is some estimate
of how different the tree could have been, had we just drawn a different sample
from the same source distribution.

One way to estimate this, from the data at hand, is non-parametric boot-
strapping. Given data (x1, y1), (x2, y2), . . . (xn, yn), we draw a random set of
integers J1, J2, . . . Jn, independently and uniformly from the numbers 1 : n, with
replacement. Then we set

(X ′
i, Y

′
i ) = (xJi

, yJi
)

Each of the re-sample data points has the same distribution as the whole of
the original data sample, and they’re independent. This is thus an IID sample
of size n from the empirical distribution, and as close as we can get to
another draw from the original data source without imposing any assumptions
about how that’s distributed. We can now treat this bootstrap sample just
like the original data and fit a tree to it. Repeated many times, we get a
bootstrap sampling distribution of trees, which approximates the actual
sampling distribution of regression trees. The spread of the predictions of our
bootstrapped trees around that of our original gives us an indication of how our
tree’s predictions are distributed around the truth.

We will see more uses for bootstrapped trees next time, when we look at
how to combine trees into forests.

3 Classification Trees

Classification trees work just like regression trees, only they try to predict a dis-
crete category (the class), rather than a numerical value. The variables which
go into the classification — the inputs — can be numerical or categorical them-
selves, the same way they can with a regression tree. They are useful for the
same reasons regression trees are — they provide fairly comprehensible predic-
tors in situations where there are many variables which interact in complicated,
nonlinear ways.

We find classification trees in almost the same way we found regression trees:
we start with a single node, and then look for the binary distinction which gives
us the most information about the class. We then take each of the resulting new
nodes and repeat the process there, continuing the recursion until we reach some
stopping criterion. The resulting tree will often be too large (i.e., over-fit), so
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we prune it back using (say) cross-validation. The differences from regression-
tree growing have to do with (1) how we measure information, (2) what kind of
predictions the tree makes, and (3) how we measure predictive error.

3.1 Measuring Information

The response variable Y is categorical, so we can use information theory to
measure how much we learn about it from knowing the value of another discrete
variable A:

I[Y ;A] =
∑

a

Pr (A = a) I[Y ;A = a] (1)

where
I[Y ;A = a] = H[Y ]−H[Y |A = a] (2)

and you remember the definitions of entropy H[Y ] and conditional entropy
H[Y |A = a].

I[Y ;A = a] is how much our uncertainty about Y decreases from knowing
that A = a. (Less subjectively: how much less variable Y becomes when we go
from the full population to the sub-population where A = a.) I[Y ;A] is how
much our uncertainty about Y shrinks, on average, from knowing the value of
A.

For classification trees, A isn’t (necessarily) one of the predictors, but rather
the answer to some question, generally binary, about one of the predictors X,
i.e., A = 1A(X) for some set A. This doesn’t change any of the math above,
however. So we chose the question in the first, root node of the tree so as to
maximize I[Y ;A], which we calculate from the formula above, using the relative
frequencies in our data to get the probabilities.

When we want to get good questions at subsequent nodes, we have to take
into account what we know already at each stage. Computationally, we do
this by computing the probabilities and informations using only the cases in
that node, rather than the complete data set. (Remember that we’re doing
recursive partitioning, so at each stage the sub-problem looks just like a smaller
version of the original problem.) Mathematically, what this means is that if
we reach the node when A = a and B = b, we look for the question C which
maximizes I[Y ;C|A = a,B = b], the information conditional on A = a, B = b.
Algebraically,

I[Y ;C|A = a,B = b] = H[Y |A = a,B = b]−H[Y |A = a,B = b, C] (3)

Computationally, rather than looking at all the cases in our data set, we just
look at the ones where A = a and B = b, and calculate as though that were
all the data. Also, notice that the first term on the right-hand side, H[Y |A =
a,B = b], does not depend on the next question C. So rather than maximizing
I[Y ;C|A = a,B = b], we can just minimize H[Y |A = a,B = b, C].
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3.2 Making Predictions

There are two kinds of predictions which a classification tree can make. One
is a point prediction, a single guess as to the class or category: to say “this is
a flower” or “this is a tiger” and nothing more. The other, a distributional
prediction, gives a probability for each class. This is slightly more general,
because if we need to extract a point prediction from a probability forecast we
can always do so, but we can’t go in the other direction.

For probability forecasts, each terminal node in the tree gives us a distribu-
tion over the classes. If the terminal node corresponds to the sequence of answers
A = a, B = b, . . .Q = q, then ideally this would give us Pr (Y = y|A = a,B = b, . . . Q = q)
for each possible value y of the response. A simple way to get close to this is to
use the empirical relative frequencies of the classes in that node. E.g., if there
are 33 cases at a certain leaf, 22 of which are tigers and 11 of which are flowers,
the leaf should predict “tiger with probability 2/3, flower with probability 1/3”.
This is the maximum likelihood estimate of the true probability distribution,
and we’ll write it P̂r (·).

Incidentally, while the empirical relative frequencies are consistent estimates
of the true probabilities under many circumstances, nothing particularly com-
pells us to use them. When the number of classes is large relative to the sample
size, we may easily fail to see any samples at all of a particular class. The
empirical relative frequency of that class is then zero. This is good if the actual
probability is zero, not so good otherwise. (In fact, under the negative log-
likelihood error discussed below, it’s infinitely bad, because we will eventually
see that class, but our model will say it’s impossible.) The empirical relative
frequency estimator is in a sense too reckless in following the data, without
allowing for the possibility that it the data are wrong; it may under-smooth.
Other probability estimators “shrink away” or “back off” from the empirical
relative frequencies; Exercise 1 involves one such estimator.

For point forecasts, the best strategy depends on the loss function. If it is
just the mis-classification rate, then the best prediction at each leaf is the class
with the highest conditional probability in that leaf. With other loss functions,
we should make the guess which minimizes the expected loss. But this leads us
to the topic of measuring error.

3.3 Measuring Error

There are three common ways of measuring error for classification trees, or
indeed other classification algorithms: misclassification rate, expected loss, and
normalized negative log-likelihood, a.k.a. cross-entropy.

3.3.1 Misclassification Rate

We’ve already seen this: it’s the fraction of cases assigned to the wrong class.
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3.3.2 Average Loss

The idea of the average loss is that some errors are more costly than others.
For example, we might try classifying cells into “cancerous” or “not cancerous”
based on their gene expression profiles6. If we think a healthy cell from some-
one’s biopsy is cancerous, we refer them for further tests, which are frightening
and unpleasant, but not, as the saying goes, the end of the world. If we think a
cancer cell is healthy, th consequences are much more serious! There will be a
different cost for each combination of the real class and the guessed class; write
Lij for the cost (“loss”) we incur by saying that the class is j when it’s really i.

For an observation x, the classifier gives class probabilities Pr (Y = i|X = x).
Then the expected cost of predicting j is:

Loss(Y = j|X = x) =
∑

i

LijPr (Y = i|X = x)

A cost matrix might look as follows

prediction
truth “cancer” “healthy”

“cancer” 0 100
“healthy” 1 0

We run an observation through the tree and wind up with class probabilities
(0.4, 0.6). The most likely class is “healthy”, but it is not the most cost-effective
decision. The expected cost of predicting “cancer” is 0.4 ∗ 0 + 0.6 ∗ 1 = 0.6,
while the expected cost of predicting “healthy” is 0.4 ∗ 100 + 0.6 ∗ 0 = 40.
The probability of Y = “healthy” must be 100 times higher than that of Y =
“cancer” before “cancer” is a cost-effective prediction.

Notice that if our estimate of the class probabilities is very bad, we can go
through the math above correctly, but still come out with the wrong answer. If
our estimates were exact, however, we’d always be doing as well as we could,
given the data.

You can show (and will, in the homework!) that if the costs are symmetric,
we get the mis-classification rate back as our error function, and should always
predict the most likely class.

3.3.3 Likelihood and Cross-Entropy

The normalized negative log-likelihood is a way of looking not just at whether
the model made the wrong call, but whether it made the wrong call with confi-
dence or tentatively. (“Often wrong, never in doubt” is not a good idea.) More
precisely, this loss function for a model Q is

L(data, Q) = − 1
n

n∑
i=1

logQ(Y = yi|X = xi)

6Think back to Homework 4, only there all the cells were cancerous, and the question was
just “which cancer?”
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where Q(Y = y|X = x) is the conditional probability the model predicts. If
perfect classification were possible, i.e., if Y were a function of X, then the best
classifier would give the actual value of Y a probability of 1, and L = 0. If
there is some irreducible uncertainty in the classification, then the best possible
classifier would give L = H[Y |X], the conditional entropy of Y given the inputs
X. Less-than-ideal predictors have L > H[Y |X]. To see this, try re-write L so
we sum over values rather than data-points:

L = − 1
n

∑
x,y

N(Y = y,X = x) logQ(Y = y|X = x)

= −
∑
x,y

P̂r (Y = y,X = x) logQ(Y = y|X = x)

= −
∑
x,y

P̂r (X = x) P̂r (Y = y|X = x) logQ(Y = y|X = x)

= −
∑

x

P̂r (X = x)
∑

y

P̂r (Y = y|X = x) logQ(Y = y|X = x)

If the quantity in the log was Pr (Y = y|X = x), this would be H[Y |X]. Since
it’s the model’s estimated probability, rather than the real probability, it turns
out that this is always larger than the conditional entropy. L is also called the
cross-entropy for this reason.

There is a slightly subtle issue here about the difference between the in-
sample loss, and the expected generalization error or risk. N(Y = y,X =
x)/n = P̂r (Y = y,X = x), the empirical relative frequency or empirical proba-
bility. The law of large numbers says that this converges to the true probability,
N(Y = y,X = x)/n→ Pr (Y = y,X = x) as n→∞. Consequently, the model
which minimizes the cross-entropy in sample may not be the one which min-
imizes it on future data, though the two ought to converge. Generally, the
in-sample cross-entropy is lower than its expected value.

Notice that to compare two models, or the same model on two different data
sets, etc., we do not need to know the true conditional entropy H[Y |X]. All we
need to know is that L is smaller the closer we get to the true class probabilities.
If we could get L down to the cross-entropy, we would be exactly reproducing
all the class probabilities, and then we could use our model to minimize any loss
function we liked (as we saw above).7

7Technically, if our model gets the class probabilities right, then the model’s predictions
are just as informative as the original data. We then say that the predictions are a sufficient
statistic for forecasting the class. In fact, if the model gets the exact probabilities wrong, but
has the correct partition of the feature space, then its prediction is still a sufficient statistic.
Under any loss function, the optimal strategy can be implemented using only a sufficient
statistic, rather than needing the full, original data. This is an interesting but much more
advanced topic; see, e.g., Blackwell and Girshick (1954) for details.
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3.3.4 Neyman-Pearson Approach

Using a loss function which assigns different weights to different error types has
two noticeable drawbacks. First of all, we have to pick the weights, and this
is often quite hard to do. Second, whether our classifier will do well in the
future depends on getting the same proportion of cases in the future. Suppose
that we’re developing a tree to classify cells as cancerous or not from their gene
expression profiles8. We will probably want to include lots of cancer cells in
our training data, so that we can get a good idea of what cancers look like,
biochemically. But, fortunately, most cells are not cancerous, so if doctors
start applying our test to their patients, they’re going to find that it massively
over-diagnoses cancer — it’s been calibrated to a sample where the proportion
(cancer):(healthy) is, say, 1:1, rather than, say, 1:20.9

There is an alternative to weighting which deals with both of these issues,
and deserves to be better known and more widely-used than it is. This was
introduced by Scott and Nowak (2005), under the name of the “Neyman-Pearson
approach” to statistical learning. The reasoning goes as follows.

When we do a binary classification problem, we’re really doing a hypothesis
test, and the central issue in hypothesis testing, as first recognized by Neyman
and Pearson, is to distinguish between the rates of different kinds of errors: false
positives and false negatives, false alarms and misses, type I and type II. The
Neyman-Pearson approach to designing a hypothesis test is to first fix a limit on
the false positive probability, the size of the test, canonically α. Then, among
all tests of size α, we want to minimize the false negative rate, or equivalently
maximize the power, β.

In the traditional theory of testing, we know the distribution of the data
under the null and alternative hypotheses, and so can (in principle) calculate α
and β for any given test. This is not the case in data mining, but we do generally
have very large samples generated under both distributions (depending on the
class of the data point). If we fix α, we can ask, for any classifier — say, a tree
— whether its false alarm rate is ≤ α. If so, we keep it for further consideration;
if not, we discard it. Among those with acceptable false alarm rates, then, we
ask “which classifier has the lowest false negative rate, the highest β?” This is
the one we select.

Notice that this solves both problems with weighting. We don’t have to pick
a weight for the two errors; we just have to say what rate of false positives α
we’re willing to accept. There are many situations where this will be easier
to do than to fix on a relative cost. Second, the rates α and β are properties
of the conditional distributions of the features, Pr (X|Y ). If those conditional
distributions stay they same but the proportions of the classes change, then the
error rates are unaffected. Thus, training the classifier with a different mix of
cases than we’ll encounter in the future is not an issue.

8This is almost like homework 4, except there all the cells were from cancers of one sort or
another.

9Cancer is rarer than that, but realistically doctors aren’t going to run a test like this
unless they have some reason to suspect cancer might be present.
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Unfortunately, I don’t know of any R implementation of Neyman-Pearson
learning; it wouldn’t be hard, I think, but goes beyond one problem set at this
level.

4 Further Reading

The classic book on prediction trees, which basically introduced them into statis-
tics and data mining, is Breiman et al. (1984). Chapter three in Berk (2008) is
clear, easy to follow, and draws heavily on Breiman et al. Another very good
chapter is the one on trees in Ripley (1996), which is especially useful for us
because Ripley wrote the tree package. (The whole book is strongly recom-
mended if you plan to go further in data-mining.) There is another tradition of
trying to learn tree-structured models which comes out of artificial intelligence
and inductive logic; see Mitchell (1997).

The clearest explanation of the Neyman-Pearson approach to hypothesis
testing I have ever read is that in Reid (1982), which is one of the books which
made me decide to learn statistics.

5 Exercises

To think through, not to hand in.

1. Suppose that we see each of k classes ni times, with
∑k

i=1 ni = n. The
maximum likelihood estimate of the probability of the ith class is p̂i =
ni/n. Suppose that instead we use the estimates

p̃i =
ni + 1∑k

j=1 nj + 1
(4)

This estimator goes back to Laplace, who called it the “rule of succession”.

Show that the p̃i sum up to one. Show, using the law of large numbers,
that p̃ → p when p̂ → p. Do these properties still hold if the +1s in the
numerator and denominator are replaced by +d for an arbitrary d > 0?

2. Fun with Laplace’s rule of succession: will the Sun rise tomorrow? One
illustration Laplace gave of this probability estimator was the following.
Suppose we know, from written records, that the Sun has risen in the east
every day for the last 4000 years.10

(a) Calculate the probability of the event “the Sun will rise in the east
tomorrow”, using Eq. 4. You may take the year as containing 365.256
days.

10Laplace was thus ignoring people who live above the Artic circle, or below the Antarctic
circle. The latter seems particularly unfair, because so many of them are scientists.
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(b) Calculate the probability that the Sun will rise in the east every day
for the next four thousand years, assuming this is an IID event. Is
this a reasonable assumption?

(c) Calculate the probability of the event “the Sun will rise in the east
every day for four thousand years” directly from Eq. 4. Does your
answer agree with part (b)? Should it?

Laplace did not, of course, base his belief that the Sun will rise in the
morning on such calculations; besides everything else, he was the world’s
expert in celestial mechanics! But this shows the problem with the

3. Show that, when all the off-diagonal elements of Lij are equal (and posi-
tive!), the best class to predict is always the most probable class.
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